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Building reverse plane partitions with
rim-hook-shaped bricks

Robin Sulzgruber∗
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Abstract. The generating function of reverse plane partitions of a fixed shape factors
into a product featuring the hook-lengths of this shape. This result, which was first
obtained by Stanley, can be explained bijectively using the Hillman–Grassl correspon-
dence between reverse plane partitions and tableaux weighted by hook-lengths. In
this extended abstract an alternative bijection between the same families of objects is
presented. This construction is best perceived as a set of rules for building reverse
plane partitions, viewed as arrangements of stacks of cubes, using bricks in the shape
of rim-hooks.
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Reverse plane partitions, like their relatives the plane partitions and semi-standard
Young tableaux, appear naturally in the context of symmetric functions and the rep-
resentation theory of permutation groups. The generating function for reverse plane
partitions was first obtained by Richard Stanley [5, Prop. 18.3].

Theorem 1. The generating function for reverse plane partitions of shape λ is given by

∑
π

q|π| = ∏
u∈λ

1
1− qh(u)

,

where h(u) denotes the hook-length of the cell u ∈ λ.

A bijective proof of this result was found by Hillman and Grassl [2]. Their algorithm
has since been related to the Robinson–Schensted–Knuth correspondence and Schützen-
berger’s jeu de taquin [1, 3] and has become an integral part of enumerative combina-
torics. In particular, Gansner [1, Thm. 3.2] used the Hillman–Grassl correspondence to
obtain a refined generating function.

Theorem 2. The trace generating function for reverse plane partitions of shape λ is given by

∑
π

∏
k∈Z

qtrk(π)
k = ∏

u∈λ

1
1− qH(u)

where trk(π) = ∑
(i,j)∈λ
j−i=k

π(i, j) and qH(i,j) =
λi−i

∏
k=j−λ′j

qk.
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More recently Morales, Panova and Pak [4] used the Hillman–Grassl correspondence
to obtain a (trace) generating function for reverse plane partitions of skew shape.

In this extended abstract we propose a different correspondence between reverse
plane partitions and multi-sets of hooks, and thus provide an alternative bijective proof
of Theorems 1 and 2. Section 1 contains an intuitive description of our algorithm, while
a formal definition is provided in Section 2 together with the needed background on
partitions and reverse plane partitions. The “forward” direction of our bijection attempts
to insert rim-hooks into reverse plane partitions, using explicitly the shape of the rim-
hook. The “inverse” bijection, which is treated in Section 3, extracts a rim-hook by
decreasing a reverse plane partition along a path and is especially reminiscent of the
method of Hillman and Grassl.

The relationship between the Hillman–Grassl correspondence and our new bijection
is unclear at this time, but demands to be investigated. Whether some of the deeper
connections and applications of the Hillman–Grassl correspondence mentioned above
are also reflected in this new correspondence is another interesting problem.

1 Building with bricks

This section aims to give an informal description of a simple set of rules how to build
reverse plane partitions using bricks of rim-hook shape. A precise mathematical formu-
lation of the algorithm and all involved definitions are contained in Section 2.

A partition is a left and top justified arrangement of cells. A reverse plane partition is
a left and top justified arrangement of numbers such that rows and columns are weakly
increasing. Alternatively we may represent reverse plane partitions by stacks of cubes.
Examples of all three objects are shown in Figure 1. Note that we have rotated the
reverse plane partition to obtain the representation by cubes such that all stacks of cubes
are visible.

Figure 1

Let u be a cell of a partition λ. The rim-hook of u is the set of cells of λ visited when
following along the rim of λ starting in the column of u and ending in the row of u. We
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view rim-hooks as stacks of cubes of height one. The example in Figure 2 shows all eight
rim-hooks of the partition λ = (4, 3, 1).

Figure 2

A part of a rim-hook is a maximal set of cubes contained in the same row of the
underlying partition. For example, the rim-hook in Figure 3 has three parts of sizes two,
three and one.

Figure 3

Suppose you are given a reverse plane partition π of shape λ and a rim-hook h of
λ. To insert h into π first try placing h on top of π such that the ends of h align with
the appropriate cells of the shape of π. If the result is a reverse plane partition, you are
done! (See Figure 4.)

Figure 4
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If you are not so lucky the rim-hook might not fit as easily, that is, the resulting
arrangement of cubes might have holes. In this case try the following: Cut off the
maximum number of parts that can be inserted into the reverse plane partition without
creating a hole and insert this initial segment of the rim-hook. Then shift the remainder
of h diagonally by one cell and try to insert it in the new position. See Figure 5.

Figure 5

Note that it is allowed to insert the remainder of h at a different height. It is also
allowed to cut and shift multiple times if needed. See Figure 6.

Figure 6

If this (iterated) process yields a reverse plane partition in the end, it is denoted by
h ∗ π and we say h inserts into π. On the other hand it might also happen that the
procedure fails, as in the following examples. In this case we say h does not insert into
π. Note in particular the third example, in which insertion fails since we demand that
each part of h remains intact and cannot be cut in two. See Figure 7.

The main results of this extended abstract can be phrased as follows. First of all
every reverse plane partition can be built as described above using only bricks of rim-
hook shape as building blocks. Secondly, given a multi-set of bricks there is always
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Figure 7

a way to sort them (lexicographically) such that they can be successively inserted into
the zero reverse plane partition. Thirdly, each reverse plane partition can be built in a
unique way such that all building blocks are inserted in lexicographic order. Altogether
we obtain a bijective correspondence between reverse plane partitions whose shape is a
fixed partition λ and the multi-sets of rim-hooks of λ.

2 Inserting rim-hooks

In this section we first fix the needed notation concerning partitions and reverse plane
partitions. Afterwards a precise formulation of the insertion algorithm described in
Section 1 is given. Furthermore, we state the main results of this abstract in Theorems 3
and 4.

Let N = {0, 1, 2, . . . } denote the non-negative integers. Moreover for n ∈ N set
[n] = {1, . . . , n}. A pair u ∈ Z2 is called cell. For each cell u denote the North, East, South
and West neighbours of u by

nu = (u1 − 1, u2), eu = (u1, u2 + 1), su = (u1 + 1, u2), wu = (u1, u2 − 1).

A partition λ is a weakly decreasing sequence λ1 ≥ λ2 ≥ · · · ≥ λr > 0 of positive
integers. The elements λi are called parts of the partition. The number of positive parts
is called the length of the partition and is denoted by `(λ). We identify each partition
with a set of cells λ = {(i, j) : i ∈ [`(λ)], j ∈ [λi]} called the Young diagram of λ.

A reverse plane partition of shape λ is a map π : λ → N such that π(u) ≤ π(eu) and
π(u) ≤ π(su) for all u ∈ λ. By convention π(u) = 0 if u1 ≤ 0 or u2 ≤ 0 and π(u) = ∞ if
u1, u2 ≥ 1 but u /∈ λ. Figure 1 shows the partition λ = (4, 3, 1), a reverse plane partition
π of shape λ and the representation of π as an arrangement of stacks of cubes.

The conjugate of a partition λ is the partition λ′ = {(j, i) : (i, j) ∈ λ}. The hook
H(u) of a cell u ∈ λ consists of the cell u itself and those cells v ∈ λ that lie directly
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East of u or directly South of u. The hook-length h(u) = λi + λ′j − i − j + 1 denotes the
cardinality of H(u). For example, in the partition λ = (4, 3, 1) above we have H(1, 2) =
{(1, 2), (1, 3), (1, 4), (2, 2)} and thus h(1, 2) = 4.

The content of a cell u is defined as

c(u) = u2 − u1.

Equip the set of cells of λ with two total orders: the reverse lexicographic order (λ,≤) and
the content order (λ,E). Let u, v ∈ λ then u ≤ v if and only if u2 > v2 or u2 = v2 and
u1 ≥ v1. Moreover u E v if and only if c(u) > c(v) or c(u) = c(v) and u1 ≥ v1. In
the example below the reverse lexicographic order (left) and content order (right) are
illustrated for our running example λ = (4, 3, 1).

8 5 3 1
7 4 2
6

6 4 2 1
7 5 3
8

Figure 8

A North-East-path in λ is a sequence P = (u0, u1, . . . , us) of cells uk ∈ λ such that
uk ∈ {nuk−1, euk−1} for all k ∈ [s]. We call `(P) = s the length, α(P) = u0 the head and
ω(P) = us the tail of the path P. Sometimes it is more convenient to consider South-
West-paths instead. A South-West-path in λ is a sequence Q = (v0, v1, . . . , vs) of cells
vk ∈ λ such that vk ∈ {svk−1, wvk−1} for all k ∈ [s]. Denote by P′ = (us, . . . , u1, u0) the
reverse path of P. Clearly the reverse of a South-West-path is a North-East-path and vice
versa. Given a South-West-path Q set `(Q) = s, α(Q) = vs and ω(Q) = v0 such that all
notions are independent of the fact whether Q is regarded as a North-East-path or as a
South-West-path. That is, α(P) = α(P′), ω(P) = ω(P′) and so forth.

A rim-hook of λ is a North-East-path h in λ such that sα(h) /∈ λ, eω(h) /∈ λ and
esu /∈ λ for all u ∈ h. For each cell (i, j) ∈ λ there is a rim-hook h with α(h) = (λ′j, j)
and ω(h) = (i, λi). This correspondence is a bijection between λ and the set of rim-
hooks of λ. We use this correspondence to define a reverse lexicographic order on the
set of rim-hooks. Namely, if f is the rim-hook corresponding to u and h is the rim-hook
corresponding to v then we let f ≤ h if and only if u ≤ v. Thereby for given rim-hooks
f and h we have f ≤ h if and only if either c(α( f )) > c(α(h)) or c(α( f )) = c(α(h)) and
c(ω( f )) ≤ c(ω(h)). Figure 2 shows all rim-hooks of the partition λ = (4, 3, 1) in reverse
lexicographic order starting with the minimum and increasing from left to right.

A cell u ∈ λ is called outer corner if eu, su /∈ λ and inner corner if eu, su ∈ λ but
esu /∈ λ. Let i1, . . . , ir be the contents of the inner corners of λ and o1, . . . , or+1 be the
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contents of the outer corners of λ sorted such that

o1 < i1 < o2 < · · · < or < ir < or+1.

Divide λ into four regions.

I = {u ∈ λ : c(u) = ik for some k ∈ [r]}
O = {u ∈ λ : c(u) = ok for some k ∈ [r + 1]}
A = {u ∈ λ : c(u) < o1 or ik < c(u) < ok+1 for some k ∈ [r]}
B = {u ∈ λ : ok < c(u) < ik for some k ∈ [r] or or+1 < c(u)}

The example in Figure 9 shows the region I in yellow and the region O in orange. The
contents of the inner corners are −2, 2, 4, the contents of the outer corners are −5, 1, 3, 7.

−5

−2 1
2 3

4 7

A

A
A

B

B

Figure 9

The motivation for these definitions is as follows. Note that α(h) ∈ A ∪ O and
ω(h) ∈ O ∪ B for any rim-hook of λ. More precisely if h is a rim-hook of λ and u ∈ h
with u ∈ I ∪A then eu ∈ h. If u ∈ h with u ∈ B ∪ I then also su ∈ h. We consider paths
that are similar to rim-hooks in the sense that they fulfill similar properties.

Next let π be a reverse plane partition of shape λ and P a path in λ. Define a map
π ± P : λ→ Z via

(π ± P)(u) =

{
π(u)± 1 if u ∈ P,
π(u) otherwise.

By definition P is π-compatible if the following two conditions are satisfied:

If u ∈ P and u ∈ I ∪A then eu ∈ P and π(eu) = π(u). (2.1)
If u, nu ∈ P then π(nu) = π(u). (2.2)

A rim-hook h inserts into π if there exists a π-compatible path P in λ such that ω(P) =
ω(h) and `(P) = `(h) and π + P is again a reverse plane partition. It is not difficult to
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show that this path P is unique if it exists at all. Thus if h inserts into π we may define
h ∗ π = π + P.

An equivalent definition can be made using the South-West-path P(π, h) with
ω(P(π, h)) = ω(h) that is constructed as follows. While `(P(π, h)) < `(h), if u is
the current cell then move to

the cell

{
su if u ∈ B ∪ I and π(su) = π(u),
wu otherwise.

(2.3)

The path P(π, h) satisfies ω(P(π, h)) = ω(h), `(P(π, h)) = `(h) and (2.2) by definition.
One can show that h inserts into π if and only if P(π, h) satisfies (2.1) and π + P(π, h) is
a reverse plane partition.

These definitions should be compared with Figures 4 to 6 of the previous section.
We now formulate two theorems essentially stating that our insertion algorithm

yields a bijection. The proofs, which are omitted in this extended abstract, are slightly
more involved than the proof of Hillman and Grassl. Among other arguments they rely
on a precise formulation of the familiar fact that certain paths in λ cannot cross. The
first theorem gives a sufficient criterion for when a rim-hook inserts into a reverse plane
partition.

Theorem 3. Let λ be a partition and h1, h2, . . . , hs a sequence of rim-hooks of λ such that
hi ≤ hi+1 for all i ∈ [s− 1]. Then hi inserts into hi+1 ∗ · · · ∗ hs ∗ 0, where 0 denotes the zero
reverse plane partition.

Let h1, h2, . . . , hs be rim-hooks such that hi ≤ hi+1 for all i ∈ [s − 1], and set π =
h1 ∗ h2 ∗ · · · ∗ hs ∗ 0. The sequence h1, h2, . . . , hs is called lexicographic factorisation of π. By
Theorem 3 there is a well-defined map Ψ assigning to each multi-set of rim-hooks of λ a
reverse plane partition of shape λ by inserting the rim-hooks into the zero reverse plane
partition in lexicographic order. The next result states that this map is a bijection, that
is, each reverse plane partition has a unique lexicographic factorisation.

Theorem 4. Let λ be a partition and π a reverse plane partition of shape λ. Then there exists a
unique sequence h1, h2, . . . , hs of rim-hooks of λ such that hi ≤ hi+1 for all i ∈ [s− 1] and

h1 ∗ h2 ∗ · · · ∗ hs ∗ 0 = π.

The examples in Figures 10 and 11 demonstrate that reverse plane partitions can in
general be built in more than one way by successively inserting rim-hooks into the zero
reverse plane partition. However, Figure 10 displays the unique factorisation predicted
by Theorem 4, in which the building blocks are lexicographically increasing.

Using the bijection Ψ it is elementary to obtain the trace generating function.
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Figure 10

Figure 11

Proof of Theorem 2. For each rim-hook h the set of contents {c(u) : u ∈ h} is an interval
{j− λ′j, . . . , λi − i} where (i, j) is the cell corresponding to h. Moreover if P is a North-
East-path in λ with ω(P) = ω(h) and `(P) = `(h) then {c(u) : u ∈ P} = {c(u) : u ∈ h}.
Hence if h inserts into a reverse plane partition π then

∏
k∈Z

qtrk(h∗π)
k = ∏

k∈Z

qtrk(π)
k ·

λi−i

∏
k=j−λ′j

qk .

3 The inverse map

This section treats the inverse of the map Ψ defined in Section 2. That is, given a reverse
plane partition how do we find its lexicographic factorisation? An answer to this ques-
tion is found in Theorem 5, which provides an inductive algorithm for constructing the
lexicographic factorisation.

First consider a simpler problem. A rim-hook h is a factor of a reverse plane partition
π if there exists a reverse plane partition π̃ such that π = h ∗ π̃. Note that the reverse
plane partition π̃ is not unique in general, as is demonstrated in Figure 12.
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Figure 12

In this sense the idea of finding a South-West-path P starting at ω(h) similar to (2.3)
and reducing each entry of π along P is flawed. Instead we shall work with North-East-
paths. Indeed it turns that π̃ is unique if one fixes α(P(π̃, h)). The natural question
arises, which cells u ∈ λ are possible candidates for u = α(P(π̃, h)). This leads to the
following definition.

The set of candidates of π is defined as

C(π) =
{

u ∈ O : π(u) > π(wu)
}
∪
{

u ∈ A : π(u) > π(wu) and π(u) > π(nu)
}

.

The example in Figure 13 shows the candidates of our favourite reverse plane partition.
For example, the cell u = (3, 1) is a candidate since u ∈ O and π(u) > π(wu), where
π(wu) = 0 by convention. The cell u = (1, 3) is not a candidate even though π(u) >
π(wu) and π(u) > π(nu) because u /∈ A ∪O.

0 1 2 3
1 2 2
1

Figure 13

Given a candidate cell u ∈ C(π) define a North-East-path Q(π, u) in λ as follows. Set
α(Q(π, u)) = u. If v is the current cell then move to

the cell

{
nv if v ∈ O ∪ B and π(nv) = π(v),
ev if v ∈ I ∪A or π(nv) < π(v) and ev ∈ λ,

and terminate the path if π(nv) < π(v) but ev /∈ λ. Moreover, define a rim-hook h(π, u)
by demanding ω(h(π, u)) = ω(Q(π, u)) and `(h(π, u)) = `(Q(π, u)).

One can prove that h is a factor of π if and only if h = h(π, u) for some candidate
u ∈ C(π) such that Q(π, u) is π-compatible and π−Q(π, u) is a reverse plane partition.
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To obtain a lexicographic factorisation of π it therefore suffices to determine the correct
candidate. The correct candidate turns out to be the minimal candidate with respect to
the content order.

Theorem 5. Let λ be a partition, π a reverse plane partition of shape λ and let u be the min-
imum of C(π) with respect to the content order. Then a lexicographic factorisation is given by
h(π, u), h2, . . . , hs, where h2, . . . , hs is a lexicographic factorisation of π −Q(π, u).

For example, the lexicographic factorisation in Figure 10 of the reverse plane partition
from Figure 1 is obtained in Figure 14. The candidates are highlighted in yellow, the
minimal candidate u and the path Q(π, u) is highlighted in orange in each of the reverse
plane partitions. The tableaux in the second row record the multi-set of rim-hooks that
have been extracted.

0 1 2 3
1 2 2
1

0 1 2 2
1 2 2
1

0 0 1 1
1 2 2
1

0 0 1 1
1 1 1
1

0 0 0 0
0 0 0
0

0 0 0 0
0 0 0
0

0 0 0 1
0 0 0
0

0 0 1 1
0 0 0
0

0 0 1 1
0 1 0
0

1 0 1 1
0 1 0
0

Figure 14

Finally, in Figure 15 we include the image of this reverse plane partition under the
Hillman–Grassl correspondence. The reader may wish to confirm that the two resulting
multi-sets of hooks are in fact not identical.

0 1 2 3
1 2 2
1

0 1 1 2
0 1 1
0

0 0 0 1
0 0 1
0

0 0 0 1
0 0 0
0

0 0 0 0
0 0 0
0

0 0 0 0
0 0 0
0

1 0 0 0
0 0 0
0

1 1 0 0
0 0 0
0

1 1 0 0
0 0 1
0

1 1 0 1
0 0 1
0

Figure 15
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